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Abstract: - Protective devices are of utmost importance in industrial facilities for they have the capacity of 
monitoring important plant parameters and, if necessary, shut the plant down. One important feature in this case 
is when a protective channel undergoes aging, because this requires decisions on preventive maintenance in 
order to delay aging or even channel replacement, whichever is more cost-effective. We present in this paper 
the steady-state accident rate evaluation for a plant equipped with a single aging channel for comparing it with 
the transient analysis developed elsewhere by means of finite differences. The calculations are much simpler to 
perform and only one numerical integration is necessary. For the typical plant parameters used we concluded 
that the steady-state solution is not feasible because it generates quite conservative results when one considers 
typical proof test intervals. A sensitivity analysis on the results was also performed, which showed that the 
protective channel failure rate during its useful life is an important parameter. In this sense, it is not advisable to 
use steady-state parameters for making decisions regarding plant accident rates because the costs involved 
would be unsurmountable and it is concluded that finite-difference methods should be used and improved for 
more realistic decisions. 
 
Key-Words: - Demand rate, Markovian reliability analysis, Supplementary variables, Plant accident rate, 
Steady-state behavior, Plant useful life. 
 
1 Introduction 
The importance of environmental and occupational 
accidents is related to the evolution of industrial 
activity and the relations of production and 
consumption over time. The evolution of the 
competitive nature of the industrial sector, 
combined with the growth of the world economy 
and the advancement of technology, has boosted the 
growth of industrial plants and the complexity of 
production processes. The social context has also 
been transformed and other issues, such as 
environmental pollution, safety and human health, 
have become a matter of concern to the public and 
to governments. Consequently, the industry has 
been obliged to examine the effects of its operations 
on the public and, in particular, to examine more 
carefully the possible hazards arising from its 
activities. 

In nuclear power plants, one of the most complex 
and important systems is the reactor protection 
system, which is defined as the system that turns off 
the reactor and keeps it in a safe condition in the 

event of a transient or malfunction that may cause 
damage to the reactor core, mainly due to 
overheating [1]. The adequate functioning of this 
protection system is imperative for the optimal and 
safe operation of the nuclear reactor. 

The reliability analysis of protection system 
components, such as the reactor protection system in 
nuclear power plants, is extremely important and 
widely studied. Despite this vast experience, an 
important issue needs to be addressed: the treatment 
of components that are no longer in their useful life, 
that is, they are aging. 

To admit that a component is aging means that 
its failure times no longer follow exponential 
distributions, which assigns great complexity to the 
problem. It implies the use of models with 
increasing failure rates to represent them, such as 
the Weibull or lognormal distributions [2]. In this 
sense, the process becomes Non-markovian. 

For the modeling of this problem, one must look 
for possible alternatives. By means of methods that 
use stochastic processes, one model stands out: the 
supplementary variables method [3]. This method 
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has the advantage of being able to generate a 
general solution to the problem (of course, the 
intrinsic numerical error must be considered), and 
therefore does not require the use of optimization 
methods, unlike other methods, such as the method 
of stages [3]. 

The purpose of this paper is to obtain the steady-
state solution for the accident rate for a plant 
equipped with a single-channel protective system 
and discuss its application, since to obtain the 
transient solution for the problem requires the use of 
finite differences [4]. 

The discussion of the reliability of a single-
channel protective system was first addressed in [5], 
where a general expression was derived without 
considering repair. An improved approach was later 
published [6], where channel repair was considered 
and its effects on the plant accident rate were 
discussed. Later on, the discussion of redundancy 
(i.e., consideration of two protective channels) was 
derived and discussed in terms of repair policies [7]. 
Still for the case of a single protective channel, a 
sensitivity analysis on parameters was performed to 
investigate their influence on the plant accident rate 
by considering the generalized perturbation theory 
[8], originally developed for nuclear reactor physics 
applications. Investigations considering further 
channel logics were addressed for the case of 
beyond two channels also [9] and a detailed 
sensitivity analysis was performed for this case also 
by means of the generalized perturbation theory 
[10]. 

The consideration of aging effects was addressed 
in earlier papers by means of supplementary 
variables for some important cases [11, 12]. The 
consideration of this approach for a single protective 
channel was presented and discussed by alternative 
methods, like supplementary variables [13] and 
Monte Carlo simulation [14]  

This paper is organized as follows: Section 2 
discusses the concept of protective systems, while 
Section 3 is dedicated to the quantitative model for 
the evaluation of the plant accident rate. As the 
purpose of the paper is the steady-state solution, 
Section 4 presents the calculations for achieving this 
goal. Section 5 displays the results obtained and, 
finally, Section 6 is dedicated to the conclusions 
reached.   
 
 
2 Protective Systems 
As mentioned in the introduction, protection 
systems are key components for the proper 
functioning of a nuclear facility. Linked to the 

control of nuclear reactor status variables, these 
systems determine whether to shut down the entire 
facility. That is, in the event of any significant 
transient occurring, the protective system must act 
in order to shut down and maintain the reactor in a 
safe condition. 

The operation of a nuclear reactor protection 
system from this simple model follows the order: 
sensors monitor the reactor control parameters, such 
as pressure, temperature, or neutron flux. When 
necessary, the logic of the protection system will 
decide whether to start the reactor shutdown. 
Several actuation logics are employed in the sensor 
channels of protection systems. An example is the 
2-out-of-3 actuation logic. This logic defines that in 
order to activate the shutdown system, at least 2 of 
the 3 protection channels must detect a deviation in 
the parameter measured by them. The choice of the 
failure logic is related, among other issues, to the 
design characteristics to be met. 

Once a transient is detected that can cause 
damage to the reactor core, the shutdown systems 
come into play. If these sensor channels fail, there is 
the possibility of manually shutting the nuclear 
reactor down. 

Examples of protection systems are: tank filters 
and reliefs, governor check valves and mechanical 
disassembles, pressure relief valves, instrumentation 
disassembly systems, sprinkler systems, fire-
fighting water systems, etc. [5]. 

The scope of this work is to model a protective 
system with only one sensor channel, subject to 
aging. The possible channel failures will be divided 
into revealed and unrevealed. This separation is 
made to ensure that the system status is known only 
if there is a demand, or if channel tests are 
performed. The inclusion of the demand rate in the 
system allows to analyze its implications when the 
values of this one are very high, a common fact in 
process facilities [6]. 

In this way, the channel may be in one of three 
different states, defined by the triplet < i, j, k > : 

i = number of working channels; 
j = number of failed channels with unrevealed 

failures; 
k = number of failed channels with revealed 

failures. 
For the case of a single channel, the values that 

the variables i, j and k can assume are 0 or 1 only. 
For example, <0,1,0> means that the channel is 
failed and its failure has not been revealed. It is easy 
to see that the higher the number of channels, the 
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greater the number of different states the system can 
be at. 

In the context of protection systems, the 
reliability parameter of interest is the average 
unavailability of this system, U. This depends not 
only on the failure and repair rates, λ and µ, 
respectively, of the protective system channels, but 
also on the test and maintenance policies and the 
logic of their performance. 

However, when it comes to the probabilistic 
safety analysis of the facility, the attribute that is 
effectively considered is the plant frequency of 
occurrence of accidents, η. 

By definition, the frequency of occurrence of 
accidents is given by the product between the 
frequency of the initiating event, the so-called 
demand rate, ν, and the average unavailability of the 
protection system. We can define it as: 
 

( )U ,η ν λ µ= .          (1) 
 

Considering that an integer number of test 
intervals is performed in a period of one year, we 
can state that the frequency of occurrence of 
accidents, applied to the case study of this work, 
will be given by: 
 

2
0

( )
p

p

P t dt
τνη

τ
= ∫ ,          (2) 

 
where P2(t) represents the probability that the 
system channel is failed and its failure has not been 
detected and τp is the interval between tests, or 
proof-test interval (in years, in general).  

The use of Eq. (2) means that the only possible 
accident initiating events are those caused by a 
system demand while it is failed and its failure has 
not been detected, since it is assumed that during 
repair the plant is off. That is, only offline repairs 
are considered here.  
 
 
3 Accident Rate by Supplementary 
Variables 
Most reliability models assume that component 
failure times assume exponential distributions. This 
hypothesis leads to a Markovian model, with 
constant transition rates, which is easy to solve both 
analytically and numerically. However, when it is 
desired to treat problems where failure times no 
longer follow exponential distributions, as in the 

case of component aging, the process becomes non-
Markovian and different approaches must be 
employed in order to solve the problem. One of 
these is the method of supplementary variables [3].  

This method consists of adding additional 
variables to the model, taking into account, in this 
case, the age of components that do not have 
exponential failure times, in order to transform the 
initially Non-markovian model into a Markovian 
one. However, in order to obtain the reliability 
parameters of interest, a system of coupled partial 
and ordinary differential equations generated by the 
method must be solved with time-dependent 
boundary conditions, which makes it difficult to 
solve the problem. Usually this system is solved 
through the finite difference method, generating 
data of important applicability, such as the behavior 
of the system when it is in a transient state [7]. 

Next, we will illustrate the approach of the 
method, applying it to the case study of this paper: 
that of a protection system consisting of a single 
channel. 

Figure 1 shows the Markovian transition diagram 
that represents the transition logic between the 
possible states of the system. Although one of the 
transition rates is a function of time, the model can 
be considered Markovian by inserting a 
supplementary variable, which takes into account 
the age of the channel. If x is the supplementary 
variable, the system of integral-differential 
equations [4] associated to the state transition 
diagram will be: 

 
Fig. 1 Transition state diagram for an aging channel 
by the method of supplementary variables 
 

1 1
1

( , ) ( , ) ( ) ( , )p x t p x t x p x t
x t

λ∂ ∂
+ = −

∂ ∂
     (3) 

 
2

1 2 3
0

( ) ( ) ( , ) ( ) ( )dP t x p x t dx P t P t
dt

λ ν γµ
∞

= − +∫     (4) 
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3
2 3

( ) ( ) ( )dP t P t P t
dt

ν µ= −          (5) 

 
where λ(x) represents the failure rate of the system, 
its mathematical definition is made later. t 
represents the time calendar. µ and ν represent, 
respectively, the rate of repair and the rate of 
demand of the system. For the case studied in this 
work, the two are considered constant. The 
probability of human error is represented by the 
constant γ.  

It should be noted that x and t vary in exactly the 
same way, however, only while the system is 
running. When a repair occurs, the variable x 
remains constant in relation to t [12]. Both vary 
from 0 to ∞. 

The states presented in the diagram have the 
following meanings: state 1 represents the system in 
operation, and is modeled by means of a probability 
density p1(x, t), which is interpreted as the 
probability of the system being in state 1 between 
the instants of time t and t + ∆t with age between x 
and x +∆x. 

Thus, the probability of the system being in state 
1 at t will be given by: 

 
1 1

0
( ) ( , )P t p x t dx

∞

= ∫           (6) 

 
State 2, in turn, represents the system when the 

channel is failed and its failure has not been 
revealed. The probability of the system being in 
state 2 is given by P2(t). 

Finally, state 3 represents the failed system with 
the failure revealed. Similarly, the probability of the 
system being in this state is given by P3(t). 

For the solution of this system of equations, we 
need initial conditions. The first equation will be 
referred to as a boundary condition, since Eq. (3) 
refers to the first-order wave equation. This 
condition will be: 
 

1( ,0) ( )p x f x=           (7) 
 
where f(x) represents the probability density 
function of the channel failure times. In this work, it 
is assumed that the failure times follow a three-
parameter Weibull distribution [2], so we will have 
for λ(x) and f(x), respectively: 
 

0 0

1

0
0 0

,
( )

,
m

x x
x m x x x x

λ
λ

λ
θ θ

−

<

= −
+ ≥



   

     

     
(8)

 

 
and 
 

0

0
0 0

0 0

1
0

0 0

,

( )
,

m

x

m x xx

e x x

f x x xm e x x

λ

λ
θ

λ

λ
θ θ

−

− − − − 
 

 <


=   −  + ≥       

  
(9)

 

 
where m represents the shape parameter and m > 1 
so that we consider that the system ages, θ  
represents the scale parameter of the Weibull 
distribution, and λo represents the failure rate of the 
system before it ages and, therefore, is constant.  

In this model, it is also assumed that the channel 
repair returns it to an as good as new condition. Of 
course, this does not always portray the actual 
behavior of protection systems. 

The condition imposed by Eq. (7) is not enough 
to solve the problem. Besides it, we also have: 
 

1 0 3( , ) (1 ) ( )p x t P tγ µ= −        (10) 
 

1 0( )P x a=             (11) 
 

2 0( )P x b=             (12) 
 

3 0( )P x c=             (13) 
 

where a, b, c are obtained by solving the problem 
for the useful life period from t = 0 until t = xo. 

The boundary condition, Eq. (10), represents the 
state of the system at age xo, where xo is defined as 
the age of the equipment as it starts aging. Equations 
(11) to (13), initial conditions, represent the 
probabilities of the protection system to be found in 
each state, 1, 2 or 3, at the beginning of its operation 
(t = 0), that is, the system is working. The values of 
the probabilities P1(t), P2(t) and P3(t) at this point 
are known, because before aging the failure times 
are exponential and hence analytically calculable. 
What guarantees the use of these values is an 
important property of Markov chains: lack of 
memory.  

One last equation remains to be presented, 
namely the sum of the probabilities of each state at 
any instant of time: 
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3

1
1i

i
P

=
=∑             (14) 

 
Eq. (14) is of paramount importance for solving 

the steady-state problem. 
Thus, it is clear that we have a well-postulated 

problem, since we have a system of three integral-
differential equations, three unknowns, three initial 
conditions, and two boundary conditions to solve 
them. 

At this point, it is relevant to mention that from 
the definition of the frequency of occurrence of 
accidents, Eq. (2), we note that we are interested 
only on the probability P2(t) over time, since this is 
the only one used in the calculations of the plant 
accident rate, after all, as already mentioned, we 
consider in this work that only offline repairs are 
performed. 
 
 
4 Steady-state Solution 
In this section we will seek the solution of the 
problem studied in the steady state, that is, it no 
longer varies with the time calendar, t. 

Knowing the steady-state solution is an 
important tool for assessing whether it is necessary 
to calculate the probabilities in the transient state, 
since if they converge rapidly to the steady-state 
values, very little depends on the transient state 
results, making the effort to calculate them 
unnecessary. It should be rememberd that the 
transient solution demands the use of finite 
diferences and considerable effort [4, 17].  

The following calculations are performed 
following the guidelines of Ref. [3]. 

Thus, with t going to infinity, the derivatives 
with respect to t go to zero and Eqs. (3) to (5) 
become: 
 

1
1

( , ) ( ) ( , )dp x x p x
dx

λ∞
= − ∞        (15) 

 

1 2 3
0

0 ( ) ( , ) ( ) ( )x p x dx P Pλ ν γµ
∞

= ∞ − ∞ + ∞∫       (16) 

 

2 30 ( ) ( )P Pν µ= ∞ − ∞         (17) 
 
Eq. (15) has the following general solution: 
 

0

1( , ) exp ( )
x

x

p x C w dwλ
 

∞ = × − 
 
∫     (18) 

 
where C is an integration constant. 

Solving the integral, we have: 
 

0
1 0 0 0( , ) exp ( ) ,

mx xp x C x x x xλ
θ

 − ∞ = × − − − ≥  
  

  (19) 

 
In order to obtain the value of this integration 

constant, we use the boundary condition, Eq. (10), 
which in the steady state becomes: 

  
1 0 3( , ) (1 ) ( )p x Pγ µ∞ = − ∞        (20) 

 
We do not know the values of p1(xo,∞) and P3(∞) in 
Eq. (20). In order to find them, we will write P1(∞) 
and P2(∞) as a function of P3(∞) and use Eq. (14) so 
as to find the solution of P3(∞) and, from it, the 
solutions to the other probabilities and to the 
frequency of occurrence of accidents.  

Thus, Eq. (19) at x = xo is: 
 

1 0( , )p x C∞ = ,           (21) 
 
from which one can write down: 
 

1 0 3( , ) (1 ) ( )C p x Pγ µ= ∞ = − ∞        (22) 
 

Putting Eq. (22) in Eq. (19), one has for x ≥ xo:  
 

0
1 0 3 0 0( , ) (1 ) ( ).exp ( )

mx xp x P x xγ µ λ
θ

 − ∞ = − ∞ − − −  
  

 
(23)

 

 
By definition: 
 

1 1
0

( ) ( , )P p x dx
∞

∞ = ∞∫          (24) 

 
So that, 
 

0

0
1 3 0 0( ) (1 ) ( ) exp ( )

m

x

x xp P x x dxγ µ λ
θ

∞  − ∞ = − ∞ − − −  
  

∫
 

(25)
 

 
The integral in Eq. (25) has no analytical 

solution. Simpson's compound method [16] will be 
used to solve it. Defining: 

 

0

0
0 0 0exp ( ) ,

m

x

x xI x x dx x xλ
θ

∞
∞  − = − − − ≥  

  
∫

  
(26)

 

 
Eq. (25) will become: 
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1 3( ) (1 ) ( )P P Iγ µ ∞∞ = − ∞         (27) 
 
With P1(∞) as a function of P3(∞), we return to 

Eq. (17): 
 

2 3( ) ( )P Pµ
ν

∞ = ∞           (28) 

 
Recalling that the sum of the probabilities at any 

instant of time is equal to one [Eq. (14)] and using 
Eqs. (27) and (28), we obtain, for P3(∞): 

 
1

3 ( ) 1 (1 )P I µγ µ
ν

−
∞ ∞ = + − + 

 
      (29) 

 
Therefore, due to Eq. (28), P2(∞) can be written 

as: 
 

1

2 ( ) 1 (1 )P Iµ µγ µ
ν ν

−
∞ ∞ = + − + 

 
     (30) 

 
And finally, we may write P1(∞) as: 
 

1

1 1 1 1 (1 )P Iµ µγ µ
ν ν

−
∞ ∞  = − + + − +  

  
    (31) 

 
As the quantitiy of interest in this work is the 

frequency of occurrence of accidents, using Eq. (2) 
we will have 

 
1

2 ( ) 1 (1 )P I µη ν µ γ µ
ν

−

∞ ∞ = ∞ = + − + 
 

   (32) 

 
 

5 Results and Discussion 
In order to evaluate the feasibility of the steady-state 
approach, we take into account the results of [4], 
which were obtained considering transient solutions 
by means of finite differences. 

Table 1 displays the parameters used for the 
calculations [4]. These parameters are typical of 
process industries, which include the nuclear 
industry. It should be noted that the values used are 
quite representative and, for example, it is not 
common to have a proof test interval higher than 
one year [5]. 

 
 
 

Table 1. Parameters used for the steady-state 
analysis [4] 

 
Parameter  Value 
λo

 (yr-1)   1 
10 

xo (yr)    1 
m 2.5 

θ (yr)    1 
γ       0.1 

µ (yr-1)  52 
ν (yr-1)       0.5 

   10.0 
 100.0 

τP
 (yr)      1.0 

 
The results obtained are displayed in Table 2, 

where the last column displays the relative error for 
the calculations of η∞. 

 
Table 2. Results obtained from the steady-state 

approach 
 

λo
 

(yr-1) 
ν 

(yr-1) 
η 

(yr-1) 
η∞ 

(yr-1) 
Rel. er. 

(%) 
 
10.0 

    0.5 0.07 0.47    571 
  10.0 0.21 4.80 2,186 
100.0 0.22 8.45 3,740 

   
  1.0 

    0.5 0.23 0.40      74 
  10.0 0.93 1.61      73 
100.0 1.07 1.88      75 

 
It is clear, from Table 2, that the use of the 

steady-state solution – that is, P2(∞) – is not 
feasible, because as can be seen from Eq. (2), we 
need to evaluate the integral of P2(t) in the interval 
from t = 0 to t = τP. If we approximate this integral 
with the asymptotic value of P2(t) we will be in 
error because the P2(t) behavior is quite smooth [4] 
and its approximation by a rectangle is not adequate. 

It can also be seen from Table 2 that the relative 
errors are much higher for higher failure rates, 
because P2 is much less steeper in the transient 
phase than for lower failure rates. On the other 
hand, the higher the demand rate, the higher the 
plant accident rate for higher failure rates. For lower 
failure rates, the steady-state plant accident rate is 
quite constant. 

We performed a sensitivity analysis on the 
parameters involved to check their influence upon 
the plant accident rate. Table 3 displays the results 
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obtained for η∞ [Eq. (32)]. 
We kept the failure rate during useful life with 

the values used before, that is, 10/yr and 1/yr, which 
represent mean times to failure of 0.1 yr and 1 yr, 
respectively. The useful life considered, xo, had been 
initially assumed 1 yr and then we considered higher 
periods up to 4 yr. A similar approach was adopted 
for the characteristic life, θ, but we varied it up to 6 
yr. Finally, the shape parameter, m, was considered 
in the range from 1.5 to 3.5. 

 
Table 3. Sensitivity analysis on η∞ (µ = 52 yr-1, ν = 

10 yr-1) 
 

λo
 

(yr-1) 
xo (yr) θ (yr-1) m η∞ 

 
 
 
 

10.0 

 
1.0 

 
1.0 

1.5 4.86 
2.5 4.80 
3.5 4.79 

 
2.0 

 
4.0 

1.5 4.79 
2.5 4.78 
3.5 4.78 

 
4.0 

 
6.0 

1.5 4.79 
2.5 4.78 
3.5 4.78 

 
 
 
 

1.0 

 
1.0 

 
1.0 

1.5 1.68 
2.5 1.61 
3.5 1.57 

 
2.0 

 
4.0 

1.5 1.11 
2.5 1.05 
3.5 1.03 

 
4.0 

 
6.0 

1.5 1.05 
2.5 1.01 
3.5 1.00 

 
It may be inferred from Table 3 that for higher 

failure rates, the steady-state frequency of accident 
is quite insensible to all other parameters, inasmuch 
as the variation from the highest value to the lowest 
is of 1.6%. On the other hand, when one considers 
the lower failure rate, this relative variation goes up 
to 40.5%. The reason for this behavior is the P2 
behavior, as discussed earlier. 

Sensitivity calculations performed considering 
different repair rates and demand rates showed no 
significant variations from the ones displayed in 
Table 3. 
 
 
6 Conclusion 
The use of steady-state solutions when solving 

systems of differential equations has the purpose of 
avoiding sophisticated mathematical and/or 
numerical methods. The case presented in this paper 
is typical. Mathematically, one has to solve a set of 
differential equations, in fact a set of integral-
differential equations with coupled boundary 
conditions. In order to obtain the time-dependent 
behavior for the plant accident rate, it is necessary to 
define a mesh in terms of calendar time and the 
channel age and use finite difference methods. This 
is true even if we consider other channel 
arrangements, as for example, a set of three 
channels, in order to avoid spurious plant trips [16]. 
In this sense, the problem requires a great 
computational effort. As the channel probability 
failure has an asymptotic behavior, one could 
imagine that the analysis of this steady-state 
behavior could be used instead of the transient 
behavior. However, if calculations turn quite easier, 
as we have seen, where the only shortcoming was 
the calculation of an integral by numerical methods 
because the function to be integrated comes from a 
Weibull distribution, the results are not adequate for 
plant decision making, as next explained. 

The use of the steady-state calculation for the 
accident rate of a plant equipped with an aging 
protective channel is not adequate because typical 
proof test intervals are equal or less than 1 yr. This 
is because the channel failure probability typically 
requires much more than one year to reach its 
steady-state behavior. Even for those cases where 
conservative plant accident rates could be used, this 
would not be feasible because the relative errors can 
be as high as 4,000%. Any decisions based upon 
higher plant accident rates could turn economically 
inviable. 

The use of higher proof test intervals could 
significantly reduce these relative errors but would 
not be sustained on practical grounds, because 
channel-aging effects could influence plant 
availability. This is explained by the fact that as the 
channel is aging, plant decisions must consider 
system replacement or, alternatively, preventive 
maintenance policies. This optimization problem 
should take into account plant performance and 
associated costs. 

The conclusion is that the use of steady-state 
solutions is not feasible for the problem at hand and 
research should be conducted in order to improve 
methods for the transient analysis of the plant 
accident rate. For example, by employing other 
finite difference methods, like the Lax-Friedrichs 
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method [18, 19] and by investigating different 
numerical integration methods for obtaining the 
probability of being in state 1 (that is, Eq. 6) [16, 
19]. Even is the steady-state solutions is pursued for 
higher channel configurations, it is not expected to 
reach errors lower than those obtained in this paper.  
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